post

From the Seafloor to the Drugstore: Inventor Amy Wright on Marine Natural Products

Those were the glory days. Amy Wright would plop down into the seat inside a giant acrylic dome to be submerged 3,000 feet underwater, with a front-row seat on the wonders far below the waters off the Florida coast. It was Wright’s first job as a chemist. She didn’t know it then, but she was riding a wave that would rise from expeditions in the Johnson-Sea-Link submersible vehicles to the breakthrough inventions in medicine she is known for today.

Days spent diving from a research ship and using robotic equipment on a manned submersible vehicle allowed Wright and her collaborators to travel to underwater vistas in the depths where, over the course of the next few decades, they would collect thousands of samples of marine invertebrates, the source materials for marine natural products.

Read more–>

post

Virtual Immersion Goes Beyond the Surface with Underwater Drones

Christine Spiten is the 27 year old co-founder and chief global strategist of Blueye Robotics, a company making underwater drones that connect with your smartphone, tablet, laptop or a pair of goggles to explore the marine environment 150 meters underwater. In an interview for Sea Technology with Spiten just a few hours after she emerged from an underwater adventure in the fjords of Trondheim Norway, where Blueye Robotics is based, I asked her about the company’s debut model, the Pioneer.

We also discussed future development plans and Spiten’s ideas about democratizing access to the ocean to make underwater inspection—whether the hull of a ship, an aquaculture farm, for search-and-rescue, or just for fun—an everyday activity without the need for expensive, heavy equipment or professional crews of divers.

Read more –>

post

X-Ray Vision: Berkeley’s High-Speed Electrons Fuel Atomic-Scale Science

BERKELEY, California—A group of eager writers attending the World Conference of Science Journalists 2017 stood on an upper platform at Berkeley’s Advanced Light Source (ALS) research lab. Under their feet, electrons raced at nearly the speed of light. Overhead, an iconic domed ceiling—the same ceiling under which Nobel laureate and nuclear scientist Ernest Lawrence invented the cyclotron—endowed a jumbled space full of laboratory pipes and instruments with the airy feel of a giant atrium.

As the journalists enjoyed their visit to Lawrence Berkeley National Laboratory on 29 October, magnets steered groups of electrons around a giant circle, 200 meters in circumference, and released light at 40 different openings. “Think of the electrons as cars with their headlights on,” said physicist Roger Falcone, director of ALS. “As they drive around, flashes of light come out each of those ports.”

Peering into molecules  

At the ends of each of the 40 light beams—in a range of wavelengths spanning the electromagnetic spectrum from infrared to both soft and hard X-rays—instruments perform experiments that depend on this constant flow of electrons. The relentless light penetrates materials and allows scientists to study the atoms and molecules inside. Each beam can be tuned to a different wavelength to reveal a particular element or molecule. Scientists use the beams to study everything from how the crystallographic structure of a new polymer reflects light rays to how a bacterium breathes in the absence of oxygen.

Read more–>

post

The Dawn of Gallium Oxide Microelectronics

WASHINGTON, D.C., February 6, 2018– Silicon has long been the go-to material in the world of microelectronics and semiconductor technology. But silicon still faces limitations, particularly with scalability for power applications. Pushing semiconductor technology to its full potential requires smaller designs at higher energy density.

“One of the largest shortcomings in the world of microelectronics is always good use of power: Designers are always looking to reduce excess power consumption and unnecessary heat generation,” said Gregg Jessen, principal electronics engineer at the Air Force Research Laboratory. “Usually, you would do this by scaling the devices. But the technologies in use today are already scaled close to their limits for the operating voltage desired in many applications. They are limited by their critical electric field strength.”

Transparent conductive oxides are a key emerging material in semiconductor technology, offering the unlikely combination of conductivity and transparency over the visual spectrum. One conductive oxide in particular has unique properties that allow it to function well in power switching: Ga2O3, or gallium oxide, a material with an incredibly large bandgap.

Read more –>

post

Deep Dive into Engineering the World’s Most Advanced ROV System

In August 2017 a research group led by explorer and philanthropist Paul G. Allen used ultra-high-tech underwater equipment to locate the wreckage of the USS Indianapolis, a ship that sank in the final days of WWII after it was struck by Japanese torpedoes. The discovery was made by Mr. Allen’s company, Vulcan Inc., using a new expedition ship it acquired for the purpose of seabed discovery—the RV Petrel.

Petrel was outfitted with cutting-edge technologies, including an autonomous underwater vehicle (AUV), which uses side-scan sonar to locate objects on the seabed, and a remotely operated vehicle (ROV) for further investigation and video documentation.

While AUVs and ROVs are becoming more common, the USS Indianapolis was discovered at a depth of nearly 6,000 m, and technologies suitable for robust research at great depth can be hard to find.

Read more –>

post

From Dinosaurs to Data Networks: Texas and the Arctic in the Anthropocene

“Report from the Top of the World!”

The flier caught my attention immediately. The U.S. Embassy in Oslo and the Royal Norwegian Embassy in Washington, DC wanted to send graduate journalism students to the Norwegian Arctic as part of a new internship program.

I applied because I wanted to gain a global perspective on my research and reporting. Less than a year later, I found myself standing on an empty beach near Bugøynes on the northern coast of Norway, silent except for the call of a distant bird and the lapping of cold water against the shore. Towering overhead were the sharp black rocks and dark islands of the fjords, silhouetted by midnight sun that glowed a soft, radiant white behind a sheet of fog…

Continue Reading–>

post

Astronomy Team Brings Data to “Instrument: One Antarctic Night”

From discovering the rings of Supernova 1987A during his time at the European Southern Observatory (Garching‚ Germany) to pioneering supernova spectropolarimetry in Texas‚ Lifan Wang has followed his passion for cosmology around the world. Wang is the director of the Chinese Center for Antarctic Astronomy  (CCAA) responsible for design and deployment of two robotic telescopes to Antarctica – the Chinese Small Telescope ARray (CSTAR) and three Antarctic Survey Telescopes (AST3). Working remotely‚ Wang and collaborators obtained hundreds of thousands of observations of the night sky above the South Pole.

Read more –>

post

Robotic Telescopes Enable Advanced Antarctic Observations

Antarctica is more like interstellar space than any other place on earth. It is extremely cold‚ dry‚ calm‚ and extra dark with clear seeing to great cosmic distances. As a result‚ a telescope just a few meters tall near the South Pole can make observations as good as larger telescopes at more temperate locations and study the same objects that space satellites can study [1]‚ but at lower cost without sending telescopes into orbit [2]. But installing a telescope in Antarctica is not easy. It requires the use of a giant ice-breaker ship‚ track-wheeled tractors pulling huge storage containers‚ and a crew of woolen boot- and parka-clad “expedition astronomers” [3]. In 2005 a Chinese expedition became the first to reach the peak of the Antarctic ice cap‚ the highest point on the Antarctic Plateau 4093 meters above sea level. It was called Dome Argus‚ now known as Dome A.

Read more –>

post

Data Processing: A Discovery Pipeline

The computer scientists working on INSTRUMENT: One Antarctic  Night view programming as an art form. They are also versed in the language of statistics‚ and they provide a valuable translation for the team. Theirs is the task of designing a data engine that allows for both graphic rendering and interaction‚ handling hundreds of thousands of data files to create an immersive art + science experience.

Read more –>

post

Data Sounds: The Music of Statistics

INSTRUMENT: One Antarctic Night is a suite of data instruments that use data from hundreds of thousands of stars captured by robotic telescopes in Antarctica. The interactive‚ and immersive aesthetic data experience will provide visitors the opportunity to explore characteristics of the stars seen above the South Pole through responsive sound‚ movement‚ graphics and visualization. To create sound for INSTRUMENT‚ the team is developing new paradigms‚ working in a blended space between practices of data sonification and computer-assisted composition to create a conversation between traditional practices‚ contemporary digital music and working with new mediums‚ new methods‚ and new theories.

The interaction system they are creating will represent the diversity of the dataset with diversity in sound. For instance‚ as they collect statistical metadata about the stars‚ the INSTRUMENT team
determines how to use those statistics to drive the system’s audio‚with human interaction as a medium.

Read more –>

post

The Data Wranglers: Cataloging the Night Sky

INSTRUMENT: One Antarctic Night obtained more than one million data files and optical data images of the night sky over the South Pole‚ and the team is building an interactive‚ immersive art + science experience that allows people to interact with star data through sound‚ movement‚ and visuals. To make the data readable‚ the team must map parameters of the data onto various parts of interaction. That means the more data they can obtain about each star‚ the richer the context for the sonification and experience design.

Read more –>

post

Permafrost thaw cracks urban infrastructure, students dig in

[Image: Google satellite image of the city of Norilsk, Russia.]

Students from Russia, U.S., Norway, Germany, Italy, China and U.K. arrived this week in Norilsk, Russia where they will spend two weeks in a field school to assess the effects of permafrost thaw on Russian urban infrastructure.

The student researchers will conduct permafrost research in the field as well as meet with representatives of the Norilsk-Nickel mining company and of local production plants and geological, planning, social and migration services to form a science-based dialogue about problems and solutions.

Continue Reading–>

post

N-ICE: Studying Arctic ice from cradle to grave

[Image: Researchers collect an ice core to measure its temperature and salinity near “RV Lance” during the N-ICE test cruise in February 2014. Photo by Paul Dodd/Norwegian Polar Institute]

When spring 2015 approaches, sun spilling the landscape will find a group of scientists adrift at sea on “RV Lance” – once a top-of-the-line seal hunting boat, now turned research vessel.

On board the ship, an international collection of researchers will watch up-close as the arctic wakes, with instruments tuned not only to wildlife but to the most important creature of them all – the sea ice.

Continue Reading –>

post

Climate change study heats up Arctic soil

[Images: Amelia Jaycen]

Students from Russia, U.S., Norway, Germany, Italy, China and U.K. arrived this week in Norilsk, Russia where they will spend two weeks in a field school to assess the effects of permafrost thaw on Russian urban infrastructure.

The student researchers will conduct permafrost research in the field as well as meet with representatives of the Norilsk-Nickel mining company and of local production plants and geological, planning, social and migration services to form a science-based dialogue about problems and solutions.

Continue Reading–>

post

Semiconductor Research Corporation funds UNT chemist’s microchip fabrication research

[Image: Dr. Oliver Chyan]

A single microchip can have several billion circuits built into a predetermined design according to its final purpose, whether for an iphone or a laptop.  Creating the chip involves a procedure of about 3,000 different steps, many of which involve chemical coatings, cleanings, and etching processes performed on microscopic electrical parts.

Professor of chemistry Dr. Oliver Chyan has been awarded a grant of nearly $130,000 from the Semiconductor Research Corporation (SRC) in cooperation with Intel to create and implement new tools for measuring and characterizing plasma-etch-polymers in microchip fabrication.

Continue Reading–>

post

Researchers track West Nile Virus, study mosquito species

[Image: Amelia Jaycen]

University of North Texas Regents Professor of Biological Sciences Dr. James Kennedy is conducting his twelfth year of mosquito sampling and testing for West Nile Virus (WNV) in cooperation with the City of Denton, and this year is the first year samples are analyzed at UNT as well as sent to the Texas Department of Health State Services.

Continue Reading –>

post

Begging to write about science

So I got into grad school, after completing a large chunk of my studies, considering an interdisciplinary degree, and then deciding to choose the Mayborn School of Journalism at the University of North Texas. Here’s the essay that made them decide to let me in and support my goals. It explains a little about why I love writing about science.

Excerpt: “The first project on which I chose to test this skill set was a UNT chemist who created a compound that offered promising results for a team of scientists trying to solve “the incandescent lamp problem,” as they called it. I immersed in their studies and experiments, documenting interchangeably with photographs, audio, and impromptu questions at a series of interviews with various researchers who each performed different parts of this journey toward successful scientific innovation. The process of documenting their work became like a fast-paced puzzle with many layers of components. The experience was a fascinating whirlwind, and it was my first introduction to many of the basic challenges of communicating—as well as understanding— science. I was determined to work until the story shaped into a multi-media piece that conveyed not only the inherent technical information but also the broader impacts of my sources’ work on society, in a format and on a platform that could
reach non-scientists.”

Continue Reading–>

 

post

Professor awarded patent for digital video security

[Diagram showing Mohanty’s content provider end method. Photo: Courtesy Mohanty]

Saraju Mohanty’s invention provides comprehensive solutions for securing digital video, and it offers advantages for content providers like Netflix, digital television companies, Hollywood movie studios, their distributors and end-users, and private parties posting to YouTube or sending video files over the internet.

Continue Reading–>

post

Next generation tools aid interdisciplinary genome research

In 1953, James D. Watson and Francis Crick discovered the double-helix structure of the DNA strand –a ribbon of genetic information that lives in each cell of a living organism.   Later, in 1990, a group of organizations including the National Institutes of Health launched  the Human Genome Project, a global collaborative effort to identify all the genes in the human DNA strand.  At that time, the event was heralded as the largest investigative project in modern science, and it took 13 years and nearly $3 billion to yield a complete human genome.

The Human Genome Project completed in 2003 was followed by a variety of other DNA research projects conducted by various organizations.  The widespread study of DNA ushered in a “genomic revolution” characterized by constant technological advances in the fields of genetics and molecular biology.  Nearly a decade later, its momentum is still steady as hundreds of new biological tools amass stores of genomic data.

Continue Reading–>

post

UNT polymer engineers partner with industry leader to develop advanced coatings technology

Building contractors across the country may owe certain thanks to UNT plastics engineers over the next few years.  Regents Professor of materials science and engineering Dr. Witold Brostow and his team at the Laboratory of Advanced Polymers and Optimized Materials(LAPOM) just completed their first contract with McKinney, TX based Encore Wire Corporation.

Continue reading

post

Paula Gaetano-Adi, UNT new media artist, receives prestigious VIDA grant award

College of Visual Arts and Design new media assistant professor Paula Gaetano-Adi has been awarded the prestigious VIDA Art and Artificial Life Awards‘ Artistic Production Incentives grant — an international grant award for art and artificial life projects created by people from Iberoamerica (Spain, Portugal, and Latin-America).  The award will allow Gaetano-Adi to pursue her proposed artificial life system project over the course of the next year.

Continue reading